home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 15
/
CU Amiga Magazine's Super CD-ROM 15 (1997)(EMAP Images)(GB)[!][issue 1997-10].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gximage.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-06-13
|
25KB
|
775 lines
/* Copyright (C) 1989, 1995, 1996, 1997 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gximage.c */
/* Image setup procedures for Ghostscript library */
#include "gx.h"
#include "math_.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gzstate.h"
#include "gxdevice.h"
#include "gzpath.h"
#include "gzcpath.h"
#include "gxdevmem.h"
#include "gximage.h"
#include "gdevmrop.h"
/* Structure descriptor */
private_st_gx_image_enum();
/* Strategy procedures */
gx_image_strategies_t image_strategies;
/* Define the procedures for initializing gs_image_ts to default values. */
private void
image_t_init(gs_image_t *pim, bool mask)
{ pim->Width = pim->Height = 0;
gs_make_identity(&pim->ImageMatrix);
pim->BitsPerComponent = 1;
/* Doesn't fill in ColorSpace. */
/* Doesn't fill in Decode. */
pim->Interpolate = false;
pim->ImageMask = pim->adjust = mask;
pim->CombineWithColor = false;
#ifdef DPNEXT
pim->HasAlpha = false;
#endif
}
void
gs_image_t_init_mask(gs_image_t *pim, bool write_1s)
{ image_t_init(pim, true);
pim->ColorSpace = NULL;
if ( write_1s )
pim->Decode[0] = 1, pim->Decode[1] = 0;
else
pim->Decode[0] = 0, pim->Decode[1] = 1;
}
void
gs_image_t_init_gray(gs_image_t *pim)
{ image_t_init(pim, false);
pim->ColorSpace = gs_color_space_DeviceGray();
pim->Decode[0] = 0;
pim->Decode[1] = 1;
}
void
gs_image_t_init_color(gs_image_t *pim)
{ gs_image_t_init_gray(pim);
pim->ColorSpace = gs_color_space_DeviceRGB();
pim->Decode[2] = pim->Decode[4] = pim->Decode[6] = 0;
pim->Decode[3] = pim->Decode[5] = pim->Decode[7] = 1;
#ifdef DPNEXT
pim->Decode[8] = 0, pim->Decode[9] = 1;
#endif
}
/* GC procedures */
#define eptr ((gx_image_enum *)vptr)
private ENUM_PTRS_BEGIN(image_enum_enum_ptrs) {
int bps;
gs_ptr_type_t ret;
/* Enumerate the used members of clues.dev_color. */
index -= gx_image_enum_num_ptrs;
bps = eptr->unpack_bps;
if ( eptr->spp != 1 )
bps = 8;
else if ( bps > 8 || eptr->unpack == sample_unpack_copy )
bps = 1;
if ( index >= (1 << bps) * st_device_color_max_ptrs ) /* done */
return 0;
ret = (*st_device_color.enum_ptrs)
(&eptr->clues[(index / st_device_color_max_ptrs) *
(255 / ((1 << bps) - 1))].dev_color,
sizeof(eptr->clues[0].dev_color),
index % st_device_color_max_ptrs, pep);
if ( ret == 0 ) /* don't stop early */
ENUM_RETURN(0);
return ret;
}
#define e1(i,elt) ENUM_PTR(i,gx_image_enum,elt);
gx_image_enum_do_ptrs(e1)
#undef e1
ENUM_PTRS_END
private RELOC_PTRS_BEGIN(image_enum_reloc_ptrs) {
int i;
#define r1(i,elt) RELOC_PTR(gx_image_enum,elt);
gx_image_enum_do_ptrs(r1)
#undef r1
{ int bps = eptr->unpack_bps;
if ( eptr->spp != 1 )
bps = 8;
else if ( bps > 8 || eptr->unpack == sample_unpack_copy )
bps = 1;
for ( i = 0; i <= 255; i += 255 / ((1 << bps) - 1) )
(*st_device_color.reloc_ptrs)
(&eptr->clues[i].dev_color, sizeof(gx_device_color), gcst);
}
} RELOC_PTRS_END
#undef eptr
/* Forward declarations */
private int color_draws_b_w(P2(gx_device *dev,
const gx_drawing_color *pdcolor));
private void image_init_map(P3(byte *map, int map_size, const float *decode));
private void image_init_colors(P9(gx_image_enum *penum, int bps, int spp,
bool multi, const float *decode,
const gs_imager_state *pis, gx_device *dev,
const gs_color_space *pcs, bool *pdcb));
/* Procedures for unpacking the input data into bytes or fracs. */
/*extern sample_unpack_proc(sample_unpack_copy);*/ /* declared above */
extern sample_unpack_proc(sample_unpack_1);
extern sample_unpack_proc(sample_unpack_2);
extern sample_unpack_proc(sample_unpack_4);
extern sample_unpack_proc(sample_unpack_8);
sample_unpack_proc((*sample_unpack_12_proc)); /* optional */
/* The image_render procedures work on fully expanded, complete rows. */
/* These take a height argument, which is an integer >= 0; */
/* they return a negative code, or the number of */
/* rows actually processed (which may be less than the height). */
/* height = 0 is a special call to indicated that the image has been */
/* fully processed; this is necessary because the last scan lines of */
/* the source data may not produce any output. */
/* Start processing an image. */
int
gx_default_begin_image(gx_device *dev,
const gs_imager_state *pis, const gs_image_t *pim,
gs_image_format_t format, const gs_int_rect *prect,
const gx_drawing_color *pdcolor, const gx_clip_path *pcpath,
gs_memory_t *mem, void **pinfo)
{ gx_image_enum *penum;
const int width = pim->Width;
const int height = pim->Height;
const int bps = pim->BitsPerComponent;
bool masked = pim->ImageMask;
const float *decode = pim->Decode;
bool multi;
int index_bps;
const gs_color_space *pcs = pim->ColorSpace;
gs_logical_operation_t lop = pis->log_op;
int code;
gs_matrix mat;
int log2_xbytes = (bps <= 8 ? 0 : arch_log2_sizeof_frac);
int spp, nplanes, spread;
uint bsize;
byte *buffer;
fixed mtx, mty;
gs_fixed_point row_extent, col_extent, x_extent, y_extent;
bool device_color;
gs_fixed_rect obox, cbox;
fixed adjust;
if ( width < 0 || height < 0 )
return_error(gs_error_rangecheck);
switch ( format )
{ case gs_image_format_chunky: multi = false; break;
case gs_image_format_component_planar: multi = true; break;
default: return_error(gs_error_rangecheck);
}
switch ( bps )
{
case 1: index_bps = 0; break;
case 2: index_bps = 1; break;
case 4: index_bps = 2; break;
case 8: index_bps = 3; break;
case 12: index_bps = 4; break;
default: return_error(gs_error_rangecheck);
}
if ( prect )
{ if ( prect->p.x < 0 || prect->p.y < 0 ||
prect->q.x < prect->p.x || prect->q.y < prect->p.y ||
prect->q.x > width || prect->q.y > height
)
return_error(gs_error_rangecheck);
}
if ( (code = gs_matrix_invert(&pim->ImageMatrix, &mat)) < 0 ||
(code = gs_matrix_multiply(&mat, &ctm_only(pis), &mat)) < 0 ||
(code =
gs_distance_transform2fixed((const gs_matrix_fixed *)&mat,
(floatp)width, (floatp)0,
&row_extent)) < 0 ||
(code =
gs_distance_transform2fixed((const gs_matrix_fixed *)&mat,
(floatp)0, (floatp)height,
&col_extent)) < 0
)
return code;
penum = gs_alloc_struct(mem, gx_image_enum, &st_gx_image_enum,
"gx_default_begin_image");
if ( penum == 0 )
return_error(gs_error_VMerror);
if ( prect )
{ penum->rect.x = prect->p.x, penum->rect.y = prect->p.y;
penum->rect.w = prect->q.x - prect->p.x,
penum->rect.h = prect->q.y - prect->p.y;
if ( (code =
gs_distance_transform2fixed((const gs_matrix_fixed *)&mat,
(floatp)penum->rect.w, (floatp)0,
&x_extent)) < 0 ||
(code =
gs_distance_transform2fixed((const gs_matrix_fixed *)&mat,
(floatp)0, (floatp)penum->rect.h,
&y_extent)) < 0
)
{ gs_free_object(mem, penum, "gx_default_begin_image");
return code;
}
}
else
{ penum->rect.x = 0, penum->rect.y = 0;
penum->rect.w = width, penum->rect.h = height;
x_extent = row_extent;
y_extent = col_extent;
}
if ( (penum->masked = masked) )
{ /* This is imagemask. */
if ( bps != 1 || multi || pcs != NULL ||
#ifdef DPNEXT
pim->HasAlpha ||
#endif
!((decode[0] == 0.0 && decode[1] == 1.0) ||
(decode[0] == 1.0 && decode[1] == 0.0))
)
{ gs_free_object(mem, penum, "gx_default_begin_image");
return_error(gs_error_rangecheck);
}
/* Initialize color entries 0 and 255. */
color_set_pure(&penum->icolor0, gx_no_color_index);
penum->icolor1 = *pdcolor;
memcpy(&penum->map[0].table.lookup4x1to32[0],
(decode[0] == 0 ? lookup4x1to32_inverted :
lookup4x1to32_identity),
16 * 4);
penum->map[0].decoding = sd_none;
spp = 1;
adjust = (pim->adjust ? float2fixed(0.25) : fixed_0);
lop = rop3_know_S_0(lop);
}
else
{ /* This is image, not imagemask. */
const gs_color_space_type _ds *pcst = pcs->type;
int b_w_color;
spp = pcst->num_components;
if ( spp < 0 ) /* Pattern not allowed */
{ gs_free_object(mem, penum, "gx_default_begin_image");
return_error(gs_error_rangecheck);
}
#ifdef DPNEXT
if ( pim->HasAlpha )
++spp;
#endif
if ( spp == 1 )
multi = false;
device_color = (*pcst->concrete_space)(pcs, pis) == pcs;
image_init_colors(penum, bps, spp, multi, decode, pis, dev,
pcs, &device_color);
adjust = fixed_0;
/* Try to transform non-default RasterOps to something */
/* that we implement less expensively. */
if ( !pim->CombineWithColor )
lop = rop3_know_T_0(lop);
else
{ if ( rop3_uses_T(lop) )
switch ( color_draws_b_w(dev, pdcolor) )
{
case 0:
lop = rop3_know_T_0(lop); break;
case 1:
lop = rop3_know_T_1(lop); break;
default:
;
}
}
if ( lop != rop3_S && /* if best case, no more work needed */
!rop3_uses_T(lop) && bps == 1 && spp == 1 &&
(b_w_color =
color_draws_b_w(dev, &penum->icolor0)) >= 0 &&
color_draws_b_w(dev, &penum->icolor1) == (b_w_color ^ 1)
)
{ if ( b_w_color )
{ /* Swap the colors and invert the RasterOp source. */
gx_device_color dcolor;
dcolor = penum->icolor0;
penum->icolor0 = penum->icolor1;
penum->icolor1 = dcolor;
lop = rop3_invert_S(lop);
}
/*
* At this point, we know that the source pixels
* correspond directly to the S input for the raster op,
* i.e., icolor0 is black and icolor1 is white.
*/
switch ( lop )
{
case rop3_D & rop3_S:
/* Implement this as an inverted mask writing 0s. */
penum->icolor1 = penum->icolor0;
/* (falls through) */
case rop3_D | rop3_not(rop3_S):
/* Implement this as an inverted mask writing 1s. */
memcpy(&penum->map[0].table.lookup4x1to32[0],
lookup4x1to32_inverted, 16 * 4);
rmask: /* Fill in the remaining parameters for a mask. */
penum->masked = masked = true;
color_set_pure(&penum->icolor0, gx_no_color_index);
penum->map[0].decoding = sd_none;
lop = rop3_T;
break;
case rop3_D & rop3_not(rop3_S):
/* Implement this as a mask writing 0s. */
penum->icolor1 = penum->icolor0;
/* (falls through) */
case rop3_D | rop3_S:
/* Implement this as a mask writing 1s. */
memcpy(&penum->map[0].table.lookup4x1to32[0],
lookup4x1to32_identity, 16 * 4);
goto rmask;
default:
;
}
}
}
penum->device_color = device_color;
/* Round up the width, +1 for an end-of-run byte. */
bsize = ((bps > 8 ? width * 2 : width) + 8) * spp;
buffer = gs_alloc_bytes(mem, bsize, "image buffer");
if ( buffer == 0 )
{ gs_free_object(mem, penum, "gx_default_begin_image");
return_error(gs_error_VMerror);
}
penum->bps = bps;
penum->unpack_bps = bps;
penum->log2_xbytes = log2_xbytes;
penum->spp = spp;
#ifdef DPNEXT
penum->has_alpha = pim->HasAlpha;
#endif
nplanes = (multi ? spp : 1);
penum->num_planes = nplanes;
spread = nplanes << log2_xbytes;
penum->spread = spread;
penum->matrix = mat;
penum->x_extent = x_extent;
penum->y_extent = y_extent;
penum->posture =
((x_extent.y | y_extent.x) == 0 ? image_portrait :
(x_extent.x | y_extent.y) == 0 ? image_landscape :
image_skewed);
mtx = float2fixed(mat.tx);
mty = float2fixed(mat.ty);
penum->pis = pis;
penum->pcs = pcs;
penum->memory = mem;
penum->dev = dev;
penum->buffer = buffer;
penum->buffer_size = bsize;
penum->line = 0;
penum->line_size = 0;
#ifdef FUTURE
/*
* If we're asked to interpolate in a partial image, we have to
* assume that the client either really only is interested in
* the given sub-image, or else is constructing output out of
* overlapping pieces.
*/
penum->interpolate = pim->Interpolate;
#else
/* Interpolation in a partial image (probably) doesn't make sense. */
penum->interpolate =
pim->Interpolate &&
!(penum->rect.x | penum->rect.y |
(width - penum->rect.w) | (height - penum->rect.h));
#endif
penum->use_rop = lop != (masked ? rop3_T : rop3_S);
#ifdef DEBUG
if ( gs_debug_c('*') )
{ if ( penum->use_rop )
dprintf1("[%03x]", lop);
dprintf5("%c%d%c%dx%d ",
(masked ? (color_is_pure(pdcolor) ? 'm' : 'h') : 'i'),
bps,
(penum->posture == image_portrait ? ' ' :
penum->posture == image_landscape ? 'L' : 'T'),
width, height);
}
#endif
penum->slow_loop = 0;
if ( pcpath == 0 )
{ (*dev_proc(dev, get_clipping_box))(dev, &obox);
cbox = obox;
penum->clip_image = 0;
}
else
penum->clip_image =
(gx_cpath_outer_box(pcpath, &obox) | /* not || */
gx_cpath_inner_box(pcpath, &cbox) ?
0 : image_clip_region);
penum->clip_outer = obox;
penum->clip_inner = cbox;
penum->log_op = rop3_T; /* rop device takes care of this */
penum->clip_dev = 0; /* in case we bail out */
penum->rop_dev = 0; /* ditto */
penum->scaler = 0; /* ditto */
/*
* If all four extrema of the image fall within the clipping
* rectangle, clipping is never required. When making this check,
* we must carefully take into account the fact that we only care
* about pixel centers.
*/
{ fixed
epx = min(row_extent.x, 0) + min(col_extent.x, 0),
eqx = max(row_extent.x, 0) + max(col_extent.x, 0),
epy = min(row_extent.y, 0) + min(col_extent.y, 0),
eqy = max(row_extent.y, 0) + max(col_extent.y, 0);
{ int hwx, hwy;
switch ( penum->posture )
{
case image_portrait:
hwx = width, hwy = height;
break;
case image_landscape:
hwx = height, hwy = width;
break;
default:
hwx = hwy = 0;
}
/*
* If the image is only 1 sample wide or high,
* and is less than 1 device pixel wide or high,
* move it slightly so that it covers pixel centers.
* This is a hack to work around a bug in some old
* versions of TeX/dvips, which use 1-bit-high images
* to draw horizontal and vertical lines without
* positioning them properly.
*/
if ( hwx == 1 && eqx - epx < fixed_1 )
{ fixed diff =
arith_rshift_1(row_extent.x + col_extent.x);
mtx = (((mtx + diff) | fixed_half) & -fixed_half) - diff;
}
if ( hwy == 1 && eqy - epy < fixed_1 )
{ fixed diff =
arith_rshift_1(row_extent.y + col_extent.y);
mty = (((mty + diff) | fixed_half) & -fixed_half) - diff;
}
}
if_debug11('b',
"[b]Image: cbox=(%g,%g),(%g,%g), obox=(%g,%g),(%g,%g)\n mt=(%g,%g) clip_image=0x%x\n",
fixed2float(cbox.p.x), fixed2float(cbox.p.y),
fixed2float(cbox.q.x), fixed2float(cbox.q.y),
fixed2float(obox.p.x), fixed2float(obox.p.y),
fixed2float(obox.q.x), fixed2float(obox.q.y),
fixed2float(mtx), fixed2float(mty),
penum->clip_image);
dda_init(penum->dda.row.x, mtx, col_extent.x, height);
dda_init(penum->dda.row.y, mty, col_extent.y, height);
if ( penum->rect.y )
{ dda_advance(penum->dda.row.x, penum->rect.y);
dda_advance(penum->dda.row.y, penum->rect.y);
}
penum->cur.x = penum->prev.x = dda_current(penum->dda.row.x);
penum->cur.y = penum->prev.y = dda_current(penum->dda.row.y);
dda_init(penum->dda.pixel0.x, penum->cur.x, row_extent.x,
width);
dda_init(penum->dda.pixel0.y, penum->cur.y, row_extent.y,
width);
if ( penum->rect.x )
{ dda_advance(penum->dda.pixel0.x, penum->rect.x);
dda_advance(penum->dda.pixel0.y, penum->rect.x);
}
{ fixed ox = dda_current(penum->dda.pixel0.x);
fixed oy = dda_current(penum->dda.pixel0.y);
if ( !penum->clip_image ) /* i.e., not clip region */
penum->clip_image =
(fixed_pixround(ox + epx) < fixed_pixround(cbox.p.x) ?
image_clip_xmin : 0) +
(fixed_pixround(ox + eqx) >= fixed_pixround(cbox.q.x) ?
image_clip_xmax : 0) +
(fixed_pixround(oy + epy) < fixed_pixround(cbox.p.y) ?
image_clip_ymin : 0) +
(fixed_pixround(oy + eqy) >= fixed_pixround(cbox.q.y) ?
image_clip_ymax : 0);
}
}
penum->y = 0;
penum->adjust = adjust;
{ static sample_unpack_proc((*procs[4])) = {
sample_unpack_1, sample_unpack_2,
sample_unpack_4, sample_unpack_8
};
if ( index_bps == 4 )
{ if ( (penum->unpack = sample_unpack_12_proc) == 0 )
{ /* 12-bit samples are not supported. */
gx_default_end_image(dev, penum, false);
return_error(gs_error_rangecheck);
}
}
else
{ penum->unpack = procs[index_bps];
if_debug1('b', "[b]unpack=%d\n", bps);
}
#define use_strategy(sp)\
(image_strategies.sp != 0 &&\
(penum->render = (*image_strategies.sp)(penum)) != 0)
if (
use_strategy(interpolate) ||
use_strategy(simple) ||
use_strategy(fracs) ||
use_strategy(mono) ||
use_strategy(color)
)
DO_NOTHING;
#undef use_strategy
else
{ /* No available strategy can handle this image. */
gx_default_end_image(dev, penum, false);
return_error(gs_error_rangecheck);
}
}
if ( penum->clip_image && pcpath )
{ /* Set up the clipping device. */
gx_device_clip *cdev =
gs_alloc_struct(mem, gx_device_clip,
&st_device_clip, "image clipper");
if ( cdev == 0 )
{ gx_default_end_image(dev, penum, false);
return_error(gs_error_VMerror);
}
gx_make_clip_device(cdev, cdev, &pcpath->list);
cdev->target = dev;
(*dev_proc(cdev, open_device))((gx_device *)cdev);
penum->clip_dev = cdev;
}
if ( penum->use_rop )
{ /* Set up the RasterOp source device. */
gx_device_rop_texture *rtdev =
gs_alloc_struct(mem, gx_device_rop_texture,
&st_device_rop_texture, "image RasterOp");
if ( rtdev == 0 )
{ gx_default_end_image(dev, penum, false);
return_error(gs_error_VMerror);
}
gx_make_rop_texture_device(rtdev,
(penum->clip_dev != 0 ?
(gx_device *)penum->clip_dev :
dev), lop, pdcolor);
penum->rop_dev = rtdev;
}
if_debug8('b', "[b]Image: w=%d h=%d [%g %g %g %g %g %g]\n",
width, height,
mat.xx, mat.xy, mat.yx, mat.yy, mat.tx, mat.ty);
*pinfo = penum;
return 0;
}
/* If a drawing color is black or white, return 0 or 1 respectively, */
/* otherwise return -1. */
private int
color_draws_b_w(gx_device *dev, const gx_drawing_color *pdcolor)
{ if ( color_is_pure(pdcolor) )
{ gx_color_value rgb[3];
(*dev_proc(dev, map_color_rgb))(dev, gx_dc_pure_color(pdcolor),
rgb);
if ( !(rgb[0] | rgb[1] | rgb[2]) )
return 0;
if ( (rgb[0] & rgb[1] & rgb[2]) == gx_max_color_value )
return 1;
}
return -1;
}
/* Initialize the color mapping tables for a non-mask image. */
private void
image_init_colors(gx_image_enum *penum, int bps, int spp, bool multi,
const float *decode /*[spp*2]*/, const gs_imager_state *pis, gx_device *dev,
const gs_color_space *pcs, bool *pdcb)
{ int ci;
static const float default_decode[] =
{ 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
#ifdef DPNEXT
, 0.0, 1.0
#endif
};
/* Initialize the color table */
#define ictype(i)\
penum->clues[i].dev_color.type
switch ( (spp == 1 ? bps : 8) )
{
case 8: /* includes all color images */
{ register gx_image_clue *pcht = &penum->clues[0];
register int n = 64;
do
{ pcht[0].dev_color.type =
pcht[1].dev_color.type =
pcht[2].dev_color.type =
pcht[3].dev_color.type =
gx_dc_type_none;
pcht[0].key = pcht[1].key =
pcht[2].key = pcht[3].key = 0;
pcht += 4;
}
while ( --n > 0 );
penum->clues[0].key = 1; /* guarantee no hit */
break;
}
case 4:
ictype(17) = ictype(2*17) = ictype(3*17) =
ictype(4*17) = ictype(6*17) = ictype(7*17) =
ictype(8*17) = ictype(9*17) = ictype(11*17) =
ictype(12*17) = ictype(13*17) = ictype(14*17) =
gx_dc_type_none;
/* falls through */
case 2:
ictype(5*17) = ictype(10*17) = gx_dc_type_none;
#undef ictype
}
/* Initialize the maps from samples to intensities. */
for ( ci = 0; ci < spp; ci++ )
{ sample_map *pmap = &penum->map[ci];
/* If the decoding is [0 1] or [1 0], we can fold it */
/* into the expansion of the sample values; */
/* otherwise, we have to use the floating point method. */
const float *this_decode = &decode[ci * 2];
const float *map_decode; /* decoding used to */
/* construct the expansion map */
const float *real_decode; /* decoding for */
/* expanded samples */
bool no_decode;
map_decode = real_decode = this_decode;
if ( map_decode[0] == 0.0 && map_decode[1] == 1.0 )
no_decode = true;
else if ( map_decode[0] == 1.0 && map_decode[1] == 0.0 )
no_decode = true,
real_decode = default_decode;
else
no_decode = false,
*pdcb = false,
map_decode = default_decode;
if ( bps > 2 || multi )
{ if ( bps <= 8 )
image_init_map(&pmap->table.lookup8[0], 1 << bps,
map_decode);
}
else
{ /* The map index encompasses more than one pixel. */
byte map[4];
register int i;
image_init_map(&map[0], 1 << bps, map_decode);
switch ( bps )
{
case 1:
{ register bits32 *p = &pmap->table.lookup4x1to32[0];
if ( map[0] == 0 && map[1] == 0xff )
memcpy((byte *)p, lookup4x1to32_identity, 16 * 4);
else if ( map[0] == 0xff && map[1] == 0 )
memcpy((byte *)p, lookup4x1to32_inverted, 16 * 4);
else
for ( i = 0; i < 16; i++, p++ )
((byte *)p)[0] = map[i >> 3],
((byte *)p)[1] = map[(i >> 2) & 1],
((byte *)p)[2] = map[(i >> 1) & 1],
((byte *)p)[3] = map[i & 1];
} break;
case 2:
{ register bits16 *p = &pmap->table.lookup2x2to16[0];
for ( i = 0; i < 16; i++, p++ )
((byte *)p)[0] = map[i >> 2],
((byte *)p)[1] = map[i & 3];
} break;
}
}
pmap->decode_base /* = decode_lookup[0] */ = real_decode[0];
pmap->decode_factor =
(real_decode[1] - real_decode[0]) /
(bps <= 8 ? 255.0 : (float)frac_1);
pmap->decode_max /* = decode_lookup[15] */ = real_decode[1];
if ( no_decode )
pmap->decoding = sd_none;
else if ( bps <= 4 )
{ int step = 15 / ((1 << bps) - 1);
int i;
pmap->decoding = sd_lookup;
for ( i = 15 - step; i > 0; i -= step )
pmap->decode_lookup[i] = pmap->decode_base +
i * (255.0 / 15) * pmap->decode_factor;
}
else
pmap->decoding = sd_compute;
if ( spp == 1 ) /* and ci == 0 */
{ /* Pre-map entries 0 and 255. */
gs_client_color cc;
cc.paint.values[0] = real_decode[0];
(*pcs->type->remap_color)(&cc, pcs, &penum->icolor0,
pis, dev, gs_color_select_source);
cc.paint.values[0] = real_decode[1];
(*pcs->type->remap_color)(&cc, pcs, &penum->icolor1,
pis, dev, gs_color_select_source);
}
}
}
/* Construct a mapping table for sample values. */
/* map_size is 2, 4, 16, or 256. Note that 255 % (map_size - 1) == 0, */
/* so the division 0xffffL / (map_size - 1) is always exact. */
private void
image_init_map(byte *map, int map_size, const float *decode)
{ float min_v = decode[0];
float diff_v = decode[1] - min_v;
if ( diff_v == 1 || diff_v == -1 )
{ /* We can do the stepping with integers, without overflow. */
byte *limit = map + map_size;
uint value = min_v * 0xffffL;
int diff = diff_v * (0xffffL / (map_size - 1));
for ( ; map != limit; map++, value += diff )
*map = value >> 8;
}
else
{ /* Step in floating point, with clamping. */
int i;
for ( i = 0; i < map_size; ++i )
{ int value = (int)((min_v + diff_v * i / (map_size - 1)) * 255);
map[i] = (value < 0 ? 0 : value > 255 ? 255 : value);
}
}
}